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In this paper there are considered the asymptotic solutions of the equa- 

tion 

3 + 4 (7, y) ;+ -t F (7, y) = 0 (0.1) 

where c is a small parameter, T = t t is slow time: by asymptotic solu- 

tions are meant the principal terms of asymptotic expansions of solutions. 

Investigations of the asymptotic behavior of solutions of differential 

equations were made in the publications [ l-51 and others. The studies 

[6-91 were devoted directly to the investigation of the asymptotic be- 

havior of the solution of equation (0.1) in certain special cases. 

1. Vethori. of computing asymptotic solutions. We shall look 
for a solution of equation (0.1) in the form 

Y = Y by 0) (1.1) 

bearing in mind the equation which connects T and w with t, we may write 

do 
- = F(T) 
dt 

(2.2) 

In order that the variable w may increase with an increase in t, we 

require that the function C+(Z) shall not take on negative values. We call 

attention to the fact that if t changes over the interval 0 < t < ro/c, 
then r an? o vary, in accordance with (1.2), over the interval 0 <. 7 < TV, 

and 04 w< 7. max $(r )/f < m. Let us evaluate the derivatives of y(r) o) 
with respect to t. Making use of (1.1) anIl (1.2), we obtain 
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The prime indicates differentiation with respect to r. In view of 

(1.3), equation (0.1) can be put into the form 

(1.4) 

lhlS, the ordinary differential equation (0.1) has been changed into 

a partial differential equation. Such a procedure has been used earlier 

in the works [ 21 and [ 51 for the study of quasilinear equations. 'Ihis 

method was applied to a nonlinear equation, which represented a special 

case of equation (O-l), in paper [ 91. 

In a number of cases, and in particular for the one considered here, 

such an approach makes it possible to shorten the derivations consider- 

ably. 

In order that equation (1.4) may be satisfied with a degree of pre- 

cision up to the terms of order O(r*), we represent y(r, 01 in the form 

&e may write 

Y (5 (‘-‘I = 5’0 (? W) + EY, (5 0) (1.5) 

F (r, y,, + ey,) = F (T yo) + F, (~1 ~0): YIE + f F,, (~9 YO + &I) zh2e2 (0 s < s ~1 

f (‘5, Yo + EYl) = f (? Yo) + fv (? Yo + riY1) Yl& (0 G ? s 4 (1.6) 

Substituting the expressions (1.5) and (1.6) into (1.4) we obtain 

where 

(k, 1 = 0, 1, 2) (1.7) 
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+ [cp’ (T) + f (? Yo) ‘p @)I ;+ + fU (c, Yo + riY1) Yl’p (7) ;* + 

+ &l/ (? Yo + EYI) Y12 + E [$ + f (51 Yo) ag + A/ (57 Yo + q/l) y, ag + 
+ fv (? Yo + TYl) Yl'p (T> ;+I + E”fv (5, Yo + r,Yl) Y, $$ (1.8) 

Putting the coefficients of 6’ and of E equal to zero, we have 

‘p2 (4 g + F (‘c, ~0) = 0 (1.9) 

‘pa (4 g + F,, (~9 yo) yl= - 2~ (T) 2 - [cp’ (4 + f (.fv Yo) ‘p @)I 3 (1 .I01 

Let us suppose that the functions y0(7 , w ) and y1 (7, o ) can be deter- 
mined, by means of equations (1.9) and (1. lo), as periodic functions of 
o with period To independent of r. We shall prove that under this con- 

dition the function (1.8) will be bounded by a constant, inlependent of 
6, ifO<7<7,andO<o<m. 

For the proof we assume that the functions F(r , y) and f(.r , y) possess 
a sufficient nunber of derivatives with respect to r and y if 0 < r < rO, 

and 0 < \ y 1 < h. From known theorems on the existence of differentiable 
solutions of differential equations it follows that under the given con- 

dition the functions y,(r , o ) and y1(7 , o 1, and also their derivatives 

with respect to r and o, up to at least the second order, will be bounded 
by constants independent of c , if 0 < r < r o, 0~ o < T,, provided the 

function qb ( 7 ) does not vanish and has a sufficient number of derivatives. 
From the fact that the period of the functions y,(r) o ) and y,(r , o ) is 

independent of r it follows that their derivatives with respect to r and 

o are also periodic in o and of the same period. ‘Iherefore, it follows 
from the boundedness of the functions 

ak+’ y1 

hk ad 
(k, 1 = 0, 1, 2) (1.11) 

whenO<r <r,,, andO<o<T,, that these functions are bounded also 
for the values 0 < r < r 0 andO<w<oD, and hence also for 0 < t < ro/<. 

Since the coefficient of c * . in (1.7) can be expressed by means of the 
functions (1. ll), it follows that this coefficient is bounded if 0 < t < 

r o/t. ‘lhe following theorem has therefore been proved. 

Theorem. If for 0 < 7 < r. and 0 < Iy( < h the functions f(7, y) and 
F(r , y) are sufficiently smooth, if the function+(r) for O< r < r0 
does not vanish and has a sufficient nunber of derivatives, and if the 
functions y,(r , w ) and y,(r) o ) can be determined from equations (1.9) 



Solutions of nonlinear second-order differential equations 

and (1.10) as periodic functions of a period which is independent 

then the function 

733 

of T, 

(1.12) 

will satisfy equation (0.1) with a precision up to terms of the order of 

c2, when 0 < t < zO/t, 

Let us now pass to the solution of the equations (1.9) and (1.10). ?n 

accordance with the established theorem, the functions yO(z, o ) and 

y (r, 
o+ r. 

o) have to be determined as functions of w with a period independent 
In regard to the equation (1.9) we shall simply assume that it has 

a solution y,(r , o) which is periodic in o and of period T, independent 
of T. nus, we limit ourselves to the cases in H3lich the equation (0.1) 

has a first approximation a family of periodic curves. Let us denote by 

a1 and n2 successive zeroes of the derivative ay,/do. We write down the- 
equations : 

atto 2 ( >I ah 2 
ao =ao ( )I (O~p<‘/aT,) @=I,3 (1.13) 

o=ai -_P U=ai +P 

8% ay, -- 
I 

=a2yoayo 
ama aa o=ai--p I aodr ati ld=lli+P 

For the purpose of proving the validity of these equations, it is 

necessary to establish the correctness of only the first one of them, 

since the remaining equations can be obtained from the first one by 

simple differentiation. Multiplying equation (1.9) by ay,/ao and inte- 
grating the result with respect to o from ai to o , we obtain 

Hence 
Ye 

fd-Ui=*p=& I s dye 

v(ai) V@,%YO) I ’ @ (T, yo) = (gg 
0 

If w lies between a1 and a2, then it is obvious that the integral in 
the last equation represents a monotone function of yo, when y0 lies 

between yO(nl ) and yQ(a2 ): Furthermore, if y0 varies over this interval, 
then p , obviously, ~11 lie between 0 and c1 
value of y0 

2 
- a1 = Tw/2. ‘Ihus, to each 

in the mentioned interval there will correspond t\lro values 
of o equal to ai + p and ai - p. ‘Ihis statement is obviously equivalent 
to the first one of the equations (1.13), whose truth has thus been 

established. 
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We shall look for an expression of y,(r) 01 in the form 

0 

y, (r, 0) = $ ’ 
s 

E (7, co) do (1.14) 

a,--%T, 

Here E(r , a) is a new unknown function. Substituting (1.14) into 

(1. lo), we obtain 

0 

E(s,o)=- i aayo ayo 
‘pa (4 (a?/0 / wa S( 2 TJ (4 - -+ a~ a~ aa 

aa 

+ [cp’ t$ + f t’t, YO) 9 WI (%)“I dw (1.15) 

In order that yi(r , o)may satisfy the conditions of the established 

theorem, y,(r , o ) has to be a periodic function in o of period T, . We 
therefore require that E(r , o )= E(r) o + T, 1. Because of the periodicity 
of the integrand in (1.15) and because of its synxnetry with respect to 

the point o = a2 [see (1.13)], the last requirement will be fulfilled if 

Let us now prove that the function E(r:, w ) is bounded. To do this, it 
is obviously sufficient to prove that this function is bounded for 

o- a1 and o = a2 when the denominator in (1.15) becomes zero. 

Suppose that for w = a1 and o = a2 the function dy,/do has zeroes of 

order r1 and r2, respectively. Then the numerator in the formula (1.15) 
will possess zeroes at these points of order 2r + 1 and 2r, + 1 [ see 

(1.16) I , while the denominator will have zeroes of order 2 r1 and 2 r2 . 
Therefore, the function E(r, 6.1) is not only bounded, but is even equal 
to zero at o= al and a= a*. 

From the boundedness and periodicity of the function l?(r) w ) and from 
(1.14) it follows that for the proof of the periodicity of y,(r , 01 with 

respect to o, it is only necessary to establish the validity of the 

following equation 

a~+‘lrr, 

s E (K, w) do = 0 

ati-‘IrT, 

(1.17) 

From formulas (1.13) and (1.15) we have 

E (5, a, - p) = - E (7, a, -I- P) (OeJ+T,l 

Obyiously, this establishes (1.17). ‘lh us we have proved that if rela- 
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tion (1.16) holds,then the function y1 (r , o ) is periodic in o and has a 

period ~~indep~dent of T. 

We shall call the relation (1.16) the condition of periodicity. This 

relation can be rewritten as 

Let us note one particular case when f(r ) y ) = f (r >. In this case, 

equation (1.18) can be integrated and written in the form 

(1.19) 

where D is an arbitrary constant. 

Since the terms of order c in (1.12) and (1.3) represent small 
oscillating corrections to the principal tens, one can usually neglect 
these terms involving c. Thus, the asymptotic formulas for the solution 

of equation (0.1) and ‘its derivative [ see (1. IS)] have the form: 

where w0 is an arbitrary constant. Therefore, for the determination of 
the asymptotic solution it is necessary to solve a system consisting of 

the equation (1.9) (which we shall call the “standard” equation) and of 

the condition of periodicity. 

We call attention to the fact that from (1.2) and the equation 

Y&S o )‘_- y,(r) o + T, ) it follows that the instantaneous period of 
oscillation T(r >, which for the considered class of problems is defined 

as the distance between two successive maxima or minima, is connected 
with the function 4(t) by the formula: 

3’ (5) = 7’, / Y (z) (1..21) 

It is for this reason that the function 4 (r ) will be called the 
instantaneous frequency of oscillations. I’he above comparisons of the 

asymptotic solutions with the exact solutions (as well as the established 

theorem) have shown that the basic condition for the closeness of the 

asymptotic solution to the exact one is that the difference between the 
instantaneous frequency C$ (r ) and zero be small, 

2. Computation of the asymptotic solutions when the solution 
of the "standard"equation is expressible as an elliptic .tur. 
Jacobi function. L3t us consider the equation 
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g + a (q y + b (T) y3 = 0 (2.1) 

Its *standards equation has the fonn 

‘p2 (4 as + a (5) yo + b (T) yo3 = 0 (2.2) 

‘Ihe solution of this equation can be expressed by means of any one of 

the elliptic functions of Jacobi: sn[K (v) o, VI, cn[K (v) o, VI, 
dn[K (VI o, ~3. Here K(u) is the complete elliptic integral of the first 

kind. * 

Let us express it by means of the elliptic sine function (see 191 ): 

Y o,l = 4 (4 sn [K (vi (5)) 64, VI (r)l (2.3) 

Substituting (2.3) into (2.2) we obtain 

4 (T) $1” (4 a* + a (T) A, (T) sn u + b (T) AIs (T) SII” u = 0 (2.4) 

Here l//,(r) = K(vf(r )I $,(r 1 , u = K(v, (r )) aI. Eliminating a2 sn u/au? 
by means of the equation for the elliptic sine, 

Psn u 

we find that 

au2 + (1 + v) sn u - 2v sn3 u = 0 

[-$JI”W +vi(T))+ ( )I a T sn u + [+I2 (5) 2v, (r) + b (5) A,2 (Y)] sns u = 0 

Eby equating to zero the coefficients of sn u and sn3u, we obtain tulro 

relations for the three functions A, (r 1, v1 (r 1 and (bi (r 1: 

$1” (4 (1 + Vl(4) = Q CT)* $I” (5) 2% (4 =--b((r)A12(~ 1 (2.5 

The one still missing equation, we obtain from the condition of 

periodicity (1.19). 

From (2.3) and [ 101 we have 

aY" 1 
2 = Al (7) K (v, (T)) F ( 

a@ 
asnu 

- = cnudnu au 
If we put (2.6) into (1.13) we obtain 

(2.6) 

l We denote by v 
usual notation 
. ..I E(\lv )) 
the modulus we 

the square of the modulus. Furthermore, in place of the 
for elliptic functions and for the integrals sn(u, d/v), 
we shall write sn(u, v), , . . , E(u); when we speak of 

shall mean its square. 



Solution of nonlinear second-order differential equations 737 

Here 

After some sinple transformations, equations (2.5) and (2.7) can be 

written in the form 

With the aid of these relations one can successively compute the solu- 

tion functions V~(Y 1, #l(r 1 and Ai@ 1. 

The graph for the solution of the equation for v,(r) is represented 
in Fig. 1. 

Let us consider the cases which correspond to the various combinations 

of the signs of the coefficients a(r) and b(r). 

1. a(r) > 0, 6(r) < 0. In this case the curve which determines v,(r) 

lies in the quadrant I, since it is seen from (2.5) that v1 (r) > 0. l'he 

solution for ul(r) exists if 0 < p(r) < 2/9. At the instant t = tl, when 

pw f 2/9, the asymptotic solution loses the oscillatory character. If 

p(’ 1 > 219, as well as in the case when a(r 1 < 0, b(r) < 0, equation 

(2.2) will have no periodic solutions. 

2. ~(7) > 0, b(r ) > 0, Ibe curve which determines v (r 1 in this case 

will lie in quadrant IV, for v,(r) < 0 because of (2.5 ! . The solution 

for VI(r) exists if 0 < p(r IJ < 00. 

3. a(r) < 0, b(r) > 0. In this case the curve in Fig. 1 lies in 

quadrant III, since vi(r) < 0. 'Ihe solution for v,(r) will exist in this 

case when - = < p(t 1 < - 4/9. 

The values of elliptic functions and elliptic integrals are usually 

given in tables for 0 < 1z < 1. 'lherefore, in cases 2 and 3, when v,(r)<O, 

in order to be able to use the asymptotic solution (2.31, one has to 

compute first the values of snf KCvlo, VI and K(v) for Y < 0. Une can, 
hawever, avoid making these computations if one looks for the solution 

of the "standard" equation (2.2) in the form 
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yo,2 = A2 (9 cn [K (v2 (9) a v2 ($1 

f (0 

(2.10) 

0.8 

-8 

76 

Fig. 1. 

Omitting the simple reductions which are entirely analogous to those 

given above, we give at once the final formulas for the evaluation of the 

functions v2(7 1, &(r 1, and A,(r 1: 

4va2 (T) M2 (~2 (4) = p (T) 

(1 -&. (q @a (4 b (4 2 0) (2.$1) 

Here 

0 

The graph for the solution of the equation for the function v,(t) is 

represented in Fig. 2. Let us consider the cases which can arise for the 

various conbinations of the signs of the functions a(r) and b(r ). 

1. a(r ) > 0, b(r ) < 0. ‘lie curve in Fig. 2 which corresponds to this 

case, is located in quadrant IV, and v,(r) < 0. 

2. a(r) > 0, b(r) > 0. ‘Ihe curve in Fig. 2, corresponding to this 
case, is located in quadrant I, and v2(r) > 0. 
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3. a(r) < 0, b(r) > 0. ‘Ihe corresponding curve in Fig. 2 is located 

in quadrant II, so that ~~(7 ) > 0 in this case. 

Fig. 2. 

Comparing the obtainad results, we see that 0 < vz (r ) < 1, in cases 2 

and 3 if we use the elliptic cosines. Hence we can use the tables in this 

case. (If we had used the elliptic sine in these cases, then - CD < 

V&f) < 0). 

It is, therefore, more convenient in the cases 2 and 3 to use the 

asymptotic solutions of (2.10). Wtt in reality the asymptotic solution 

(2.10) gives nothing new over the asymptotic solution (2.3). Furthermore, 
one can prove that the asymptotic solutions (2.3) and (2.10) coincide. 

There are no real solution for the modulus when - 4/9 < p(r ) < 0 as 

can be seen from Figs. 1 and 2. This is due to the fact that for values 

of the function p(r ) which lie in this interval, the solution of (2.2) 
cannot be expressed in terms of functions which oscillate about the value 

y = 0, as do the elliptic cosine and sine. In this case the solution of 

equation (2 .2) oscillates around the value y = 2 4 - a(r ) / b(r ). 

In order to obtain an asymptotic solution which might exist when the 
values of p(r ) are contained in this interval, one must find a solution 

of the “standard. equation of the form 

Y~,:~ = A3 (4 dn [K (v8 (7)) (fi3, y3 (t)l (2.12) 
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For the functions v3 (r ), +, (r 1, and A9 (r ) one obtains the following 
relations 

Here 
K(v) 

N(Y) = *da i cnsusnaudu = -22va $ 
0 

We shall find expressions for the function A3. O(r ), around which the 
oscillations take place, and for the amplitude of the oscillations 
A 

9 

(r 1. It is known that the function dn u oscillates between 1 and 
ii- v. Therefore, by (2.12) we have 

A,., (T) = A3 (T) ’ + v*2-va (‘I , A&) = /A&) 1-v12-v3(T) 1 (2.14) 

The graph of the solution of the equation for v7 (r ) is constructed in 
Fig. 1. It shows that for each value of the function p1 (I ), which lies in 
the interval - 4/9 < p,(r ) < 0, there exist two values for v7 (r 1, one 
positive the ‘other negative. One can prove that the asymptotic solutions, 
which correspond to these values, coincide. 

However, due to the fact that the tables of elliptic functions are 
constructed for positive values of the modulus, one must use the asymp- 
totic solutions which correspond to o( v_,(r ) < 1. 

With the aid of the asymptotic solution (2.12), one can extend the 
solutions (2.3) and (2.10) over an interval of values of t for which 

4/9 < p(r 1 < 0, 
72.3) 

and, conversely, by means of the asymptotic solution 
or (2.10) one can extend the solution (2.12) over an interval of 

values t for which - oo< p,(r) < - 4/9, 0 < p,(r ) < m. Let us consider 
briefly the more complicated equation 

;; + a0 b> + a,(r)y + a2(4 Y2 + 

In this case the solution of the .standard. 
in the form 

us (7) y3 = 0 (2.15) 

equation should be sought 

y. = a (T) d (~64 + B (4 or yo= 
a (9 a* 6.4 + B (4 

Y (9 0 6,4 + 1 y (T) I+ (7 4 + 1 

Here & , o ) can stand for any one of the functions 

sn [K(V)% VI, cn [K (v) 0, ~1, dn W (4 0, ~1 
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One can obtain especially simple formulas in the case when a3 (r ) 3 0. 

'ihe solution of the standard equation, in this case, should be sought in 
the form y0 = ab)o'(r, ~)ijSr). 

In closing this Section, we remark that in the case when the equations 
(2.1) and (2.15) contain a term cf(t, y)dy/dt, the asymptotic solutions 
can also be expressed by means of elliptic Jacobi functions. 

An investigation of these cases can be reduced to the study of a single 
first order differential equation (in the usual modulus v), whose solu- 
tion changes l/c times more slowly than the solution of the original 
equation, and which csn be handled quite simply. 

3. ~proximate compntation of the asymptotic solutions. In 
those cases when the solution of the l standard* 
pressed in terms of special functions, we shall 
form 

N 

equation cannot be ex- 
seek the solution in the 

(3.1) 

Substituting (3.1) into equation (l.l), we obtain 

- (p” (T) $ Bn (T) n2 cos no + $) F,, [T, B. (T), , . ., BN (T)] cos no = 0 
n==o n==o 

Here 

Fn ['r, Bo('c), . . ., BN(‘)] -;[F [T, n~B,(r).anw]cosmdw (3.2) 
0 

Equating to zero the coefficients of similar harsmnics, and neglect- 
ing the harmonics of order higher than N, we obtain 

- 'pa (T) B,(T) n2 + F, [T, B,(T), . l ., BN @)I = 0 (n=O,L2 )...) N) (3.3) 

This system consists of N+ 1 equations and contains N+ 2 unknowns: 
c#&), B*(r ), .*., 
substituting 

B,(t ). lhe required additional equation is obtained by 
(3.1) into the condition of periodicity (1.18): 

With the aid of the equations (3.3) and (3.4), the functions&), 
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Bob ), . . . . BJr) can be expressed in terms of known functions. 

The case of greatest interest, due to its simplicity, arises when 

N= 1. In this case the system of equations (3.3) and (3.4) contains only 

three functions: +(r ), B,(r) and B,(r). 

For the purpose of illustrating the method and its precision in the 

case when N = 1, we compute the approximate asymptotic solution of equa- 

tion (2.1) for the case when u(r) > 0, and compare it with the exact 

asymptotic solution. The system of equations (3.3) and (3.4) has the form 

a(r)& (T) + ~(T)&(T) l&,"(~) + $ B,'(T)] = 0 

-'~"(t)&(r) + a(~)&(r) + b(r)&(r) 13&,' (T) + -+2(r)l = 0 (3.5) 

e(7) Bi2 (T) = C 

Here C is an arbitrary constant. In the case under consideration, when 

o(r) > 0, the oscillations can occur only around y = 0. Hence, B,(r) s 0. 
Because of this, the system (3.5) takes on the form: 

--~J~(T) + a(~) _1- + b(r)h12(s) = 0, ‘p (4 Bla (4 = C (3.6) 

In order to reduce this system to a simpler form, we introduce the 

function p(r) by means of the equation 

'p(r) = Vq,(,) (3.7) 

Eliminating the function B,(r) and making use of (3.7), we obtain 

$ (7) - p (7) - $ q (7) = 0 q (7) = cb (T) [a @)I-“‘” (3.8) 

A physical meaning can be ascribed to a real, positive (see Section 1) 

solution of this equation. Because of (3.6) and (3.7) such a solution 

will tend to unity as b(r) goes to zero. 'lhe graph for the computation 

of such a solution of equation (3.8) is shown in Fig. 2. This figure 

shows that a solution p(r) can exist only if - 8 d 3/9 < q(r) < 00. At the 

instant t = t when q(r ) = - 8 c/ 3/9, the solution of equation (2.1) 
loses its oscillatory nature (a loss of stability occurs within the system). 

After the function +(t) h as been determined, the arqlitude of the 

oscillation B,(r) is computed with the aid of the second one of the equa- 

tions (3.6). 

We shall compare the approximate asymptotic formulas for the instant- 

aneous period, and for the amplitude of the oscillations, with the exact 

asymptotic formulas (see Section 2). 

let us first consider the case when b(r) = 0. From (3.6) to (3.8) and 
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(1.21) we have 

An examination of equations (2.5) and (2.7) reveals that in this case 

the exact asymptotic formulas coincide with (3.9). 

Iet us examine further the case when b(r ) < 0 and 1 b(r ) 1 is increas- 

ing. In this case a loss of staLility can occur within the system. This 

case is more difficult to treat Ly the approximate method when N = 1, 

because the influence of the higher harmonics (which are neglected when 
N = 1) is here most pronounced. let us compare the approximate and the 

exact relations at the moment of loss of’ stability. From the grapll in 
Fig. 2, and from the system (3.6) we have 

B,(T) = ,/f ,,irg (3.10) 

The expression R,(7 ), which is olrtained with the aid of the exact 

asymptotic solution (see [ 91 ), differs from (3.10) only in so far as 

in place of the coefficient d 8/9 = 0.943 there stands the number unity. 
Iet us compare the conditions of stability. .Just as in [ 91 , we consider 

the case when 

y =- a, ‘lJ1 J&t q : 0. b(t) = 0 at t=O 

From (3.1.) and (3.6) we obtain in this case the following results 

For the sake of simplicity let us assume that 

la C-41 ‘It [min n (s)]“’ min __ ._ = ____- 
I b (5) I max IO (5) I 

(3.11) 

The condition of stability takes the form of the inequality 

kSuLstituting the value of C from (3.11) into this expression, w may 
rewrite the inequality in the form 

(3.12) 

‘Ihe condition of staljility obtained by means of the exact asymptotic 
solution [ 91 differs from (3.12) only Ly the fact that in place of the 
coefficient \/ 8/9 L/ 3 = 0.716 tlrere stanrts the coefficient \/ 4 \/ 2/3 n = 

0.775. Thus, the approximate asm)totic formula compared to the exact 
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asymptotic formula has an error of 10 per cent. 
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